Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Cell Rep ; 43(2): 113670, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38219147

RESUMO

Neuronal protein synthesis is required for long-lasting plasticity and long-term memory consolidation. Dephosphorylation of eukaryotic initiation factor 2α is one of the key translational control events that is required to increase de novo protein synthesis that underlies long-lasting plasticity and memory consolidation. Here, we interrogate the molecular pathways of translational control that are triggered by neuronal stimulation with brain-derived neurotrophic factor (BDNF), which results in eukaryotic initiation factor 2α (eIF2α) dephosphorylation and increases in de novo protein synthesis. Primary rodent neurons exposed to BDNF display elevated translation of GADD34, which facilitates eIF2α dephosphorylation and subsequent de novo protein synthesis. Furthermore, GADD34 requires G-actin generated by cofilin to dephosphorylate eIF2α and enhance protein synthesis. Finally, GADD34 is required for BDNF-induced translation of synaptic plasticity-related proteins. Overall, we provide evidence that neurons repurpose GADD34, an effector of the integrated stress response, as an orchestrator of rapid increases in eIF2-dependent translation in response to plasticity-inducing stimuli.


Assuntos
Fatores de Despolimerização de Actina , Fator Neurotrófico Derivado do Encéfalo , Actinas , Fator de Iniciação 2 em Eucariotos , Neurônios
2.
J Neurosci ; 43(45): 7483-7488, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940588

RESUMO

Local protein synthesis in mature brain axons regulates the structure and function of presynaptic boutons by adjusting the presynaptic proteome to local demands. This crucial mechanism underlies experience-dependent modifications of brain circuits, and its dysregulation may contribute to brain disorders, such as autism and intellectual disability. Here, we discuss recent advancements in the axonal transcriptome, axonal RNA localization and translation, and the role of presynaptic local translation in synaptic plasticity and memory.


Assuntos
Axônios , Terminações Pré-Sinápticas , Axônios/fisiologia , Terminações Pré-Sinápticas/metabolismo , Plasticidade Neuronal/fisiologia , Encéfalo/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(49): e2308671120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38015848

RESUMO

Activation of neuronal protein synthesis upon learning is critical for the formation of long-term memory. Here, we report that learning in the contextual fear conditioning paradigm engenders a decrease in eIF2α (eukaryotic translation initiation factor 2) phosphorylation in astrocytes in the hippocampal CA1 region, which promotes protein synthesis. Genetic reduction of eIF2α phosphorylation in hippocampal astrocytes enhanced contextual and spatial memory and lowered the threshold for the induction of long-lasting plasticity by modulating synaptic transmission. Thus, learning-induced dephosphorylation of eIF2α in astrocytes bolsters hippocampal synaptic plasticity and consolidation of long-term memories.


Assuntos
Astrócitos , Potenciação de Longa Duração , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/genética , Hipocampo/fisiologia , Biossíntese de Proteínas , Região CA1 Hipocampal , Memória de Longo Prazo/fisiologia
4.
bioRxiv ; 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37693507

RESUMO

The protein kinase mechanistic target of rapamycin complex 1 (mTORC1) is one of the primary triggers for initiating cap-dependent translation. Amongst its functions, mTORC1 phosphorylates eIF4E-binding proteins (4E-BPs), which prevents them from binding to eIF4E and thereby enables translation initiation. mTORC1 signaling is required for multiple forms of protein synthesis-dependent synaptic plasticity and various forms of long-term memory (LTM), including associative threat memory. However, the approaches used thus far to target mTORC1 and its effectors, such as pharmacological inhibitors or genetic knockouts, lack fine spatial and temporal control. The development of a conditional and inducible eIF4E knockdown mouse line partially solved the issue of spatial control, but still lacked optimal temporal control to study memory consolidation. Here, we have designed a novel optogenetic tool (Opto4E-BP) for cell type-specific, light-dependent regulation of eIF4E in the brain. We show that light-activation of Opto4E-BP decreases protein synthesis in HEK cells and primary mouse neurons. In situ , light-activation of Opto4E-BP in excitatory neurons decreased protein synthesis in acute amygdala slices. Finally, light activation of Opto4E-BP in principal excitatory neurons in the lateral amygdala (LA) of mice after training blocked the consolidation of LTM. The development of this novel optogenetic tool to modulate eIF4E-dependent translation with spatiotemporal precision will permit future studies to unravel the complex relationship between protein synthesis and the consolidation of LTM.

5.
Proc Natl Acad Sci U S A ; 120(38): e2307704120, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37695913

RESUMO

Protein synthesis is a fundamental cellular process in neurons that is essential for synaptic plasticity and memory consolidation. Here, we describe our investigations of a neuron- and muscle-specific translation factor, eukaryotic Elongation Factor 1a2 (eEF1A2), which when mutated in patients results in autism, epilepsy, and intellectual disability. We characterize three EEF1A2 patient mutations, G70S, E122K, and D252H, and demonstrate that all three mutations decrease de novo protein synthesis and elongation rates in HEK293 cells. In mouse cortical neurons, the EEF1A2 mutations not only decrease de novo protein synthesis but also alter neuronal morphology, regardless of endogenous levels of eEF1A2, indicating that the mutations act via a toxic gain of function. We also show that eEF1A2 mutant proteins display increased tRNA binding and decreased actin-bundling activity, suggesting that these mutations disrupt neuronal function by decreasing tRNA availability and altering the actin cytoskeleton. More broadly, our findings are consistent with the idea that eEF1A2 acts as a bridge between translation and the actin cytoskeleton, which is essential for proper neuron development and function.


Assuntos
Transtorno Autístico , Epilepsia , Fator 1 de Elongação de Peptídeos , Animais , Humanos , Camundongos , Actinas/genética , Transtorno Autístico/genética , Epilepsia/genética , Células HEK293 , Mutação , Fator 1 de Elongação de Peptídeos/genética
6.
Front Cell Neurosci ; 17: 1219270, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545882

RESUMO

Cyfip1, the gene encoding cytoplasmic FMR1 interacting protein 1, has been of interest as an autism candidate gene for years. A potential role in autism spectrum disorder (ASD) is suggested by its location on human chromosome 15q11-13, an instable region that gives rise to a variety of copy number variations associated with syndromic autism. In addition, the CYFIP1 protein acts as a binding partner to Fragile X Messenger Ribonucleoprotein (FMRP) in the regulation of translation initiation. Mutation of FMR1, the gene encoding FMRP, causes Fragile X syndrome, another form of syndromic autism. Here, in mice overexpressing CYFIP1, we study response properties of cerebellar Purkinje cells to activity of the climbing fiber input that originates from the inferior olive and provides an instructive signal in sensorimotor input analysis and plasticity. We find that CYFIP1 overexpression results in enhanced localization of the synaptic organizer neurexin 1 (NRXN1) at climbing fiber synaptic input sites on Purkinje cell primary dendrites and concomitant enhanced climbing fiber synaptic transmission (CF-EPSCs) measured using whole-cell patch-clamp recordings from Purkinje cells in vitro. Moreover, using two-photon measurements of GCaMP6f-encoded climbing fiber signals in Purkinje cells of intact mice, we observe enhanced responses to air puff stimuli applied to the whisker field. These findings resemble our previous phenotypic observations in a mouse model for the human 15q11-13 duplication, which does not extend to the Cyfip1 locus. Thus, our study demonstrates that CYFIP1 overexpression shares a limited set of olivo-cerebellar phenotypes as those resulting from an increased number of copies of non-overlapping genes located on chromosome 15q11-13.

8.
Cell Rep ; 42(8): 112901, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37505982

RESUMO

Individuals with fragile X syndrome (FXS) are frequently diagnosed with autism spectrum disorder (ASD), including increased risk for restricted and repetitive behaviors (RRBs). Consistent with observations in humans, FXS model mice display distinct RRBs and hyperactivity that are consistent with dysfunctional cortico-striatal circuits, an area relatively unexplored in FXS. Using a multidisciplinary approach, we dissect the contribution of two populations of striatal medium spiny neurons (SPNs) in the expression of RRBs in FXS model mice. Here, we report that dysregulated protein synthesis at cortico-striatal synapses is a molecular culprit of the synaptic and ASD-associated motor phenotypes displayed by FXS model mice. Cell-type-specific translational profiling of the FXS mouse striatum reveals differentially translated mRNAs, providing critical information concerning potential therapeutic targets. Our findings uncover a cell-type-specific impact of the loss of fragile X messenger ribonucleoprotein (FMRP) on translation and the sequence of neuronal events in the striatum that drive RRBs in FXS.


Assuntos
Transtorno do Espectro Autista , Síndrome do Cromossomo X Frágil , Animais , Humanos , Camundongos , Síndrome do Cromossomo X Frágil/metabolismo , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Proteína do X Frágil de Retardo Mental/genética , Proteína do X Frágil de Retardo Mental/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Camundongos Knockout , Modelos Animais de Doenças
9.
bioRxiv ; 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37333416

RESUMO

Protein synthesis is a fundamental cellular process in neurons that is essential for synaptic plasticity and memory consolidation. Here, we describe our investigations of a neuron- and muscle-specific translation factor, e ukaryotic E longation F actor 1a2 (eEF1A2), which when mutated in patients results in autism, epilepsy, and intellectual disability. We characterize three most common EEF1A2 patient mutations, G70S, E122K, and D252H, and demonstrate that all three mutations decrease de novo protein synthesis and elongation rates in HEK293 cells. In mouse cortical neurons, the EEF1A2 mutations not only decrease de novo protein synthesis, but also alter neuronal morphology, regardless of endogenous levels of eEF1A2, indicating that the mutations act via a toxic gain of function. We also show that eEF1A2 mutant proteins display increased tRNA binding and decreased actin bundling activity, suggesting that these mutations disrupt neuronal function by decreasing tRNA availability and altering the actin cytoskeleton. More broadly, our findings are consistent with the idea that eEF1A2 acts as a bridge between translation and the actin skeleton, which is essential for proper neuron development and function. Significance Statement: E ukaryotic E longation F actor 1A2 (eEF1A2) is a muscle- and neuron-specific translation factor responsible for bringing charge tRNAs to the elongating ribosome. Why neurons express this unique translation factor is unclear; however, it is known that mutations in EEF1A2 cause severe drug-resistant epilepsy, autism and neurodevelopmental delay. Here, we characterize the impact of three common disease-causing mutations in EEF1A2 and demonstrate that they cause decreased protein synthesis via reduced translation elongation, increased tRNA binding, decreased actin bundling activity, as well as altered neuronal morphology. We posit that eEF1A2 serves as a bridge between translation and the actin cytoskeleton, linking these two processes that are essential for neuronal function and plasticity.

10.
Neuron ; 111(11): 1760-1775.e8, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-36996810

RESUMO

The proteome of glutamatergic synapses is diverse across the mammalian brain and involved in neurodevelopmental disorders (NDDs). Among those is fragile X syndrome (FXS), an NDD caused by the absence of the functional RNA-binding protein FMRP. Here, we demonstrate how the brain region-specific composition of postsynaptic density (PSD) contributes to FXS. In the striatum, the FXS mouse model shows an altered association of the PSD with the actin cytoskeleton, reflecting immature dendritic spine morphology and reduced synaptic actin dynamics. Enhancing actin turnover with constitutively active RAC1 ameliorates these deficits. At the behavioral level, the FXS model displays striatal-driven inflexibility, a typical feature of FXS individuals, which is rescued by exogenous RAC1. Striatal ablation of Fmr1 is sufficient to recapitulate behavioral impairments observed in the FXS model. These results indicate that dysregulation of synaptic actin dynamics in the striatum, a region largely unexplored in FXS, contributes to the manifestation of FXS behavioral phenotypes.


Assuntos
Síndrome do Cromossomo X Frágil , Animais , Camundongos , Proteína do X Frágil de Retardo Mental/genética , Actinas/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos Knockout , Espinhas Dendríticas/metabolismo , Mamíferos/metabolismo
11.
Front Mol Neurosci ; 15: 1002846, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466805

RESUMO

Neuropeptides can exert volume modulation in neuronal networks, which account for a well-calibrated and fine-tuned regulation that depends on the sensory and behavioral contexts. For example, oxytocin (OT) and oxytocin receptor (OTR) trigger a signaling pattern encompassing intracellular cascades, synaptic plasticity, gene expression, and network regulation, that together function to increase the signal-to-noise ratio for sensory-dependent stress/threat and social responses. Activation of OTRs in emotional circuits within the limbic forebrain is necessary to acquire stress/threat responses. When emotional memories are retrieved, OTR-expressing cells act as gatekeepers of the threat response choice/discrimination. OT signaling has also been implicated in modulating social-exposure elicited responses in the neural circuits within the limbic forebrain. In this review, we describe the cellular and molecular mechanisms that underlie the neuromodulation by OT, and how OT signaling in specific neural circuits and cell populations mediate stress/threat and social behaviors. OT and downstream signaling cascades are heavily implicated in neuropsychiatric disorders characterized by emotional and social dysregulation. Thus, a mechanistic understanding of downstream cellular effects of OT in relevant cell types and neural circuits can help design effective intervention techniques for a variety of neuropsychiatric disorders.

12.
J Am Chem Soc ; 144(47): 21494-21501, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36394560

RESUMO

Translation is an elementary cellular process that involves a large number of factors interacting in a concerted fashion with the ribosome. Numerous natural products have emerged that interfere with the ribosomal function, such as puromycin, which mimics an aminoacyl tRNA and causes premature chain termination. Here, we introduce a photoswitchable version of puromycin that, in effect, puts translation under optical control. Our compound, termed puroswitch, features a diazocine that allows for reversible and nearly quantitative isomerization and pharmacological modulation. Its synthesis involves a new photoswitchable amino acid building block. Puroswitch shows little activity in the dark and becomes substantially more active and cytotoxic, in a graded fashion, upon irradiation with various wavelengths of visible light. In vitro translation assays confirm that puroswitch inhibits translation with a mechanism similar to that of puromycin itself. Once incorporated into nascent proteins, puroswitch reacts with standard puromycin antibodies, which allows for tracking de novo protein synthesis using western blots and immunohistochemistry. As a cell-permeable small molecule, puroswitch can be used for nascent proteome profiling in a variety of cell types, including primary mouse neurons. We envision puroswitch as a useful biochemical tool for the optical control of translation and for monitoring newly synthesized proteins in defined locations and at precise time points.


Assuntos
Luz , Aminoacil-RNA de Transferência , Animais , Camundongos , Puromicina/farmacologia , Western Blotting , Aminoácidos
14.
Mol Autism ; 13(1): 29, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768828

RESUMO

BACKGROUND: Fragile X syndrome (FXS), the most common genetic cause of autism spectrum disorder and intellectual disability, is caused by the lack of fragile X mental retardation protein (FMRP) expression. FMRP is an mRNA binding protein with functions in mRNA transport, localization, and translational control. In Fmr1 knockout mice, dysregulated translation has been linked to pathophysiology, including abnormal synaptic function and dendritic morphology, and autistic-like behavioral phenotypes. The role of FMRP in morphology and function of excitatory neurons has been well studied in mice lacking Fmr1, but the impact of Fmr1 deletion on inhibitory neurons remains less characterized. Moreover, the contribution of FMRP in different cell types to FXS pathophysiology is not well defined. We sought to characterize whether FMRP loss in parvalbumin or somatostatin-expressing neurons results in FXS-like deficits in mice. METHODS: We used Cre-lox recombinase technology to generate two lines of conditional knockout mice lacking FMRP in either parvalbumin or somatostatin-expressing cells and carried out a battery of behavioral tests to assess motor function, anxiety, repetitive, stereotypic, social behaviors, and learning and memory. In addition, we used fluorescent non-canonical amino acid tagging along with immunostaining to determine whether de novo protein synthesis is dysregulated in parvalbumin or somatostatin-expressing neurons. RESULTS: De novo protein synthesis was elevated in hippocampal parvalbumin and somatostatin-expressing inhibitory neurons in Fmr1 knockout mice. Cell type-specific deletion of Fmr1 in parvalbumin-expressing neurons resulted in anxiety-like behavior, impaired social behavior, and dysregulated de novo protein synthesis. In contrast, deletion of Fmr1 in somatostatin-expressing neurons did not result in behavioral abnormalities and did not significantly impact de novo protein synthesis. This is the first report of how loss of FMRP in two specific subtypes of inhibitory neurons is associated with distinct FXS-like abnormalities. LIMITATIONS: The mouse models we generated are limited by whole body knockout of FMRP in parvalbumin or somatostatin-expressing cells and further studies are needed to establish a causal relationship between cellular deficits and FXS-like behaviors. CONCLUSIONS: Our findings indicate a cell type-specific role for FMRP in parvalbumin-expressing neurons in regulating distinct behavioral features associated with FXS.


Assuntos
Transtorno do Espectro Autista , Proteína do X Frágil de Retardo Mental , Síndrome do Cromossomo X Frágil , Neurônios , Animais , Transtorno do Espectro Autista/metabolismo , Modelos Animais de Doenças , Proteína do X Frágil de Retardo Mental/genética , Proteína do X Frágil de Retardo Mental/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/patologia , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Neurônios/patologia , Parvalbuminas/metabolismo , RNA Mensageiro/metabolismo , Somatostatina/metabolismo
15.
Mol Psychiatry ; 27(5): 2470-2484, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35365802

RESUMO

The cellular mechanisms of autism spectrum disorder (ASD) are poorly understood. Cumulative evidence suggests that abnormal synapse function underlies many features of this disease. Astrocytes regulate several key neuronal processes, including the formation of synapses and the modulation of synaptic plasticity. Astrocyte abnormalities have also been identified in the postmortem brain tissue of ASD individuals. However, it remains unclear whether astrocyte pathology plays a mechanistic role in ASD, as opposed to a compensatory response. To address this, we combined stem cell culturing with transplantation techniques to determine disease-specific properties inherent to ASD astrocytes. We demonstrate that ASD astrocytes induce repetitive behavior as well as impair memory and long-term potentiation when transplanted into the healthy mouse brain. These in vivo phenotypes were accompanied by reduced neuronal network activity and spine density caused by ASD astrocytes in hippocampal neurons in vitro. Transplanted ASD astrocytes also exhibit exaggerated Ca2+ fluctuations in chimeric brains. Genetic modulation of evoked Ca2+ responses in ASD astrocytes modulates behavior and neuronal activity deficits. Thus, this study determines that astrocytes derived from ASD iPSCs are sufficient to induce repetitive behavior as well as cognitive deficit, suggesting a previously unrecognized primary role for astrocytes in ASD.


Assuntos
Astrócitos , Transtorno do Espectro Autista , Animais , Astrócitos/fisiologia , Transtorno do Espectro Autista/genética , Hipocampo/patologia , Camundongos , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia
16.
Trends Neurosci ; 45(4): 297-311, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35184897

RESUMO

De novo protein synthesis is required for long-term memory consolidation. Dynamic regulation of protein synthesis occurs via a complex interplay of translation factors and modulators. Many components of the protein synthesis machinery have been targeted either pharmacologically or genetically to establish its requirement for memory. The combination of ligand/light-gating and genetic strategies, that is, chemogenetics and optogenetics, has begun to reveal the spatiotemporal resolution of protein synthesis in specific cell types during memory consolidation. This review summarizes current knowledge of the macroscopic and microscopic neural substrates for protein synthesis in memory consolidation. In addition, we highlight future directions for determining the localization and timing of de novo protein synthesis for memory consolidation with tools that permit unprecedented spatiotemporal precision.


Assuntos
Consolidação da Memória , Humanos , Consolidação da Memória/fisiologia , Memória de Longo Prazo , Biossíntese de Proteínas
17.
Front Cell Neurosci ; 16: 961276, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36726454

RESUMO

Brain-derived neurotrophic factor (BDNF) is a neurotrophin that regulates several aspects of brain function. Although numerous studies have demonstrated the expression and function of BDNF in neurons, its expression in microglia remains controversial. Using a combination of genetic tools and fluorescence imaging, we analyzed BDNF expression patterns and investigated the effect of microglial Bdnf deletion on neuronal activity, early-stage spine formation, and microglia-neuron attraction in the motor cortex. We did not detect BDNF expression in microglia at the transcriptional or translational level, in physiological or pathological conditions, and none of the assessed neuronal functions were found to be affected in conditional Bdnf knockout mice. Our results suggest that microglia do not express BDNF in sufficient amounts to modulate neuronal function.

18.
Semin Cell Dev Biol ; 125: 101-109, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34304995

RESUMO

Memory storage is a conserved survivability feature, present in virtually any complex species. During the last few decades, much effort has been devoted to understanding how memories are formed and which molecular switches define whether a memory should be stored for a short or a long period of time. Among these, de novo protein synthesis is known to be required for the conversion of short- to long-term memory. There are a number translational control pathways involved in synaptic plasticity and memory consolidation, including the phosphorylation of the eukaryotic initiation factor 2 alpha (eIF2α), which has emerged as a critical molecular switch for long-term memory consolidation. In this review, we discuss findings pertaining to the requirement of de novo protein synthesis to memory formation, how local dendritic and axonal translation is regulated in neurons, and how these can influence memory consolidation. We also highlight the importance of eIF2α-dependent translation initiation to synaptic plasticity and memory formation. Finally, we contextualize how aberrant phosphorylation of eIF2α contributes to Alzheimer's disease (AD) pathology and how preventing disruption of eIF2-dependent translation may be a therapeutic avenue for preventing and/or restoring memory loss in AD.


Assuntos
Doença de Alzheimer , Consolidação da Memória , Doença de Alzheimer/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Memória de Longo Prazo/fisiologia , Plasticidade Neuronal/fisiologia , Fosforilação , Biossíntese de Proteínas
20.
Commun Biol ; 4(1): 823, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193971

RESUMO

Alzheimer's disease (AD) is an age-related neurodegenerative disorder associated with memory loss, but the AD-associated neuropathological changes begin years before memory impairments. Investigation of the early molecular abnormalities in AD might offer innovative opportunities to target memory impairment prior to onset. Decreased protein synthesis plays a fundamental role in AD, yet the consequences of this dysregulation for cellular function remain unknown. We hypothesize that alterations in the de novo proteome drive early metabolic alterations in the hippocampus that persist throughout AD progression. Using a combinatorial amino acid tagging approach to selectively label and enrich newly synthesized proteins, we found that the de novo proteome is disturbed in young APP/PS1 mice prior to symptom onset, affecting the synthesis of multiple components of the synaptic, lysosomal, and mitochondrial pathways. Furthermore, the synthesis of large clusters of ribosomal subunits were affected throughout development. Our data suggest that large-scale changes in protein synthesis could underlie cellular dysfunction in AD.


Assuntos
Envelhecimento , Doença de Alzheimer/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Fatores Etários , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Cromatografia Líquida/métodos , Feminino , Hipocampo/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Presenilina-1/genética , Presenilina-1/metabolismo , Proteoma/classificação , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...